Metamath Proof Explorer


Theorem funimassd

Description: Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses funimassd.1 xφ
funimassd.2 φFunF
funimassd.3 φxAFxB
Assertion funimassd φFAB

Proof

Step Hyp Ref Expression
1 funimassd.1 xφ
2 funimassd.2 φFunF
3 funimassd.3 φxAFxB
4 fvelima FunFyFAxAFx=y
5 2 4 sylan φyFAxAFx=y
6 nfv xyFA
7 1 6 nfan xφyFA
8 nfv xyB
9 id Fx=yFx=y
10 9 eqcomd Fx=yy=Fx
11 10 3ad2ant3 φxAFx=yy=Fx
12 3 3adant3 φxAFx=yFxB
13 11 12 eqeltrd φxAFx=yyB
14 13 3exp φxAFx=yyB
15 14 adantr φyFAxAFx=yyB
16 7 8 15 rexlimd φyFAxAFx=yyB
17 5 16 mpd φyFAyB
18 17 ex φyFAyB
19 18 ssrdv φFAB