Metamath Proof Explorer


Theorem funiunfv

Description: The indexed union of a function's values is the union of its image under the index class.

Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to F Fn A , the theorem can be proved without this dependency. (Contributed by NM, 26-Mar-2006) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion funiunfv Fun F x A F x = F A

Proof

Step Hyp Ref Expression
1 funres Fun F Fun F A
2 1 funfnd Fun F F A Fn dom F A
3 fniunfv F A Fn dom F A x dom F A F A x = ran F A
4 2 3 syl Fun F x dom F A F A x = ran F A
5 undif2 dom F A A dom F A = dom F A A
6 dmres dom F A = A dom F
7 inss1 A dom F A
8 6 7 eqsstri dom F A A
9 ssequn1 dom F A A dom F A A = A
10 8 9 mpbi dom F A A = A
11 5 10 eqtri dom F A A dom F A = A
12 iuneq1 dom F A A dom F A = A x dom F A A dom F A F A x = x A F A x
13 11 12 ax-mp x dom F A A dom F A F A x = x A F A x
14 iunxun x dom F A A dom F A F A x = x dom F A F A x x A dom F A F A x
15 eldifn x A dom F A ¬ x dom F A
16 ndmfv ¬ x dom F A F A x =
17 15 16 syl x A dom F A F A x =
18 17 iuneq2i x A dom F A F A x = x A dom F A
19 iun0 x A dom F A =
20 18 19 eqtri x A dom F A F A x =
21 20 uneq2i x dom F A F A x x A dom F A F A x = x dom F A F A x
22 un0 x dom F A F A x = x dom F A F A x
23 21 22 eqtri x dom F A F A x x A dom F A F A x = x dom F A F A x
24 14 23 eqtri x dom F A A dom F A F A x = x dom F A F A x
25 fvres x A F A x = F x
26 25 iuneq2i x A F A x = x A F x
27 13 24 26 3eqtr3ri x A F x = x dom F A F A x
28 df-ima F A = ran F A
29 28 unieqi F A = ran F A
30 4 27 29 3eqtr4g Fun F x A F x = F A