Metamath Proof Explorer


Theorem funresdm1

Description: Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021)

Ref Expression
Assertion funresdm1 Rel A dom A dom B = A B dom A = A

Proof

Step Hyp Ref Expression
1 resundir A B dom A = A dom A B dom A
2 resdm Rel A A dom A = A
3 2 adantr Rel A dom A dom B = A dom A = A
4 dmres dom B dom A = dom A dom B
5 simpr Rel A dom A dom B = dom A dom B =
6 4 5 syl5eq Rel A dom A dom B = dom B dom A =
7 relres Rel B dom A
8 reldm0 Rel B dom A B dom A = dom B dom A =
9 7 8 ax-mp B dom A = dom B dom A =
10 6 9 sylibr Rel A dom A dom B = B dom A =
11 3 10 uneq12d Rel A dom A dom B = A dom A B dom A = A
12 un0 A = A
13 11 12 eqtrdi Rel A dom A dom B = A dom A B dom A = A
14 1 13 syl5eq Rel A dom A dom B = A B dom A = A