Metamath Proof Explorer


Theorem funressnbrafv2

Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv . (Contributed by AV, 7-Sep-2022)

Ref Expression
Assertion funressnbrafv2 AVBWFunFAAFBF''''A=B

Proof

Step Hyp Ref Expression
1 simpllr AVBWFunFAAFBBW
2 eleq1 x=BxWBW
3 2 anbi2d x=BAVxWAVBW
4 3 anbi1d x=BAVxWFunFAAVBWFunFA
5 breq2 x=BAFxAFB
6 4 5 anbi12d x=BAVxWFunFAAFxAVBWFunFAAFB
7 eqeq2 x=BF''''A=xF''''A=B
8 6 7 imbi12d x=BAVxWFunFAAFxF''''A=xAVBWFunFAAFBF''''A=B
9 id AFxAFx
10 funressneu AVxWFunFAAFx∃!xAFx
11 10 3expa AVxWFunFAAFx∃!xAFx
12 tz6.12-1-afv2 AFx∃!xAFxF''''A=x
13 9 11 12 syl2an2 AVxWFunFAAFxF''''A=x
14 8 13 vtoclg BWAVBWFunFAAFBF''''A=B
15 1 14 mpcom AVBWFunFAAFBF''''A=B
16 15 ex AVBWFunFAAFBF''''A=B