Metamath Proof Explorer


Theorem fv1stcnv

Description: The value of the converse of 1st restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020)

Ref Expression
Assertion fv1stcnv XAYV1stA×Y-1X=XY

Proof

Step Hyp Ref Expression
1 snidg YVYY
2 1 anim2i XAYVXAYY
3 eqid X=X
4 2 3 jctir XAYVXAYYX=X
5 opex XYV
6 brcnvg XAXYVX1stA×Y-1XYXY1stA×YX
7 5 6 mpan2 XAX1stA×Y-1XYXY1stA×YX
8 brres XAXY1stA×YXXYA×YXY1stX
9 7 8 bitrd XAX1stA×Y-1XYXYA×YXY1stX
10 9 adantr XAYVX1stA×Y-1XYXYA×YXY1stX
11 opelxp XYA×YXAYY
12 11 anbi1i XYA×YXY1stXXAYYXY1stX
13 br1steqg XAYVXY1stXX=X
14 13 anbi2d XAYVXAYYXY1stXXAYYX=X
15 12 14 bitrid XAYVXYA×YXY1stXXAYYX=X
16 10 15 bitrd XAYVX1stA×Y-1XYXAYYX=X
17 4 16 mpbird XAYVX1stA×Y-1XY
18 1stconst YV1stA×Y:A×Y1-1 ontoA
19 f1ocnv 1stA×Y:A×Y1-1 ontoA1stA×Y-1:A1-1 ontoA×Y
20 f1ofn 1stA×Y-1:A1-1 ontoA×Y1stA×Y-1FnA
21 18 19 20 3syl YV1stA×Y-1FnA
22 simpl XAYVXA
23 fnbrfvb 1stA×Y-1FnAXA1stA×Y-1X=XYX1stA×Y-1XY
24 21 22 23 syl2an2 XAYV1stA×Y-1X=XYX1stA×Y-1XY
25 17 24 mpbird XAYV1stA×Y-1X=XY