Metamath Proof Explorer


Theorem fvline2

Description: Alternate definition of a line. (Contributed by Scott Fenton, 25-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion fvline2 N A 𝔼 N B 𝔼 N A B A Line B = x 𝔼 N | x Colinear A B

Proof

Step Hyp Ref Expression
1 fvline N A 𝔼 N B 𝔼 N A B A Line B = x | x Colinear A B
2 liness N A 𝔼 N B 𝔼 N A B A Line B 𝔼 N
3 1 2 eqsstrrd N A 𝔼 N B 𝔼 N A B x | x Colinear A B 𝔼 N
4 df-ss x | x Colinear A B 𝔼 N x | x Colinear A B 𝔼 N = x | x Colinear A B
5 3 4 sylib N A 𝔼 N B 𝔼 N A B x | x Colinear A B 𝔼 N = x | x Colinear A B
6 1 5 eqtr4d N A 𝔼 N B 𝔼 N A B A Line B = x | x Colinear A B 𝔼 N
7 dfrab2 x 𝔼 N | x Colinear A B = x | x Colinear A B 𝔼 N
8 6 7 eqtr4di N A 𝔼 N B 𝔼 N A B A Line B = x 𝔼 N | x Colinear A B