Metamath Proof Explorer


Theorem fvline2

Description: Alternate definition of a line. (Contributed by Scott Fenton, 25-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion fvline2 NA𝔼NB𝔼NABALineB=x𝔼N|xColinearAB

Proof

Step Hyp Ref Expression
1 fvline NA𝔼NB𝔼NABALineB=x|xColinearAB
2 liness NA𝔼NB𝔼NABALineB𝔼N
3 1 2 eqsstrrd NA𝔼NB𝔼NABx|xColinearAB𝔼N
4 df-ss x|xColinearAB𝔼Nx|xColinearAB𝔼N=x|xColinearAB
5 3 4 sylib NA𝔼NB𝔼NABx|xColinearAB𝔼N=x|xColinearAB
6 1 5 eqtr4d NA𝔼NB𝔼NABALineB=x|xColinearAB𝔼N
7 dfrab2 x𝔼N|xColinearAB=x|xColinearAB𝔼N
8 6 7 eqtr4di NA𝔼NB𝔼NABALineB=x𝔼N|xColinearAB