Metamath Proof Explorer


Theorem fvmptrab

Description: Value of a function mapping a set to a class abstraction restricting a class depending on the argument of the function. More general version of fvmptrabfv , but relying on the fact that out-of-domain arguments evaluate to the empty set, which relies on set.mm's particular encoding. (Contributed by AV, 14-Feb-2022)

Ref Expression
Hypotheses fvmptrab.f F=xVyM|φ
fvmptrab.r x=Xφψ
fvmptrab.s x=XM=N
fvmptrab.v XVNV
fvmptrab.n XVN=
Assertion fvmptrab FX=yN|ψ

Proof

Step Hyp Ref Expression
1 fvmptrab.f F=xVyM|φ
2 fvmptrab.r x=Xφψ
3 fvmptrab.s x=XM=N
4 fvmptrab.v XVNV
5 fvmptrab.n XVN=
6 1 a1i XVF=xVyM|φ
7 3 2 rabeqbidv x=XyM|φ=yN|ψ
8 7 adantl XVx=XyM|φ=yN|ψ
9 id XVXV
10 eqid yN|ψ=yN|ψ
11 10 4 rabexd XVyN|ψV
12 6 8 9 11 fvmptd XVFX=yN|ψ
13 1 fvmptndm ¬XVFX=
14 df-nel XV¬XV
15 rabeq N=yN|ψ=y|ψ
16 rab0 y|ψ=
17 15 16 eqtr2di N==yN|ψ
18 5 17 syl XV=yN|ψ
19 14 18 sylbir ¬XV=yN|ψ
20 13 19 eqtrd ¬XVFX=yN|ψ
21 12 20 pm2.61i FX=yN|ψ