Metamath Proof Explorer


Theorem fvmptt

Description: Closed theorem form of fvmpt . (Contributed by Scott Fenton, 21-Feb-2013) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion fvmptt xx=AB=CF=xDBADCVFA=C

Proof

Step Hyp Ref Expression
1 simp2 xx=AB=CF=xDBADCVF=xDB
2 1 fveq1d xx=AB=CF=xDBADCVFA=xDBA
3 risset ADxDx=A
4 elex CVCV
5 nfa1 xxx=AB=C
6 nfv xCV
7 nffvmpt1 _xxDBA
8 7 nfeq1 xxDBA=C
9 6 8 nfim xCVxDBA=C
10 simprl x=AB=CxDCVxD
11 simplr x=AB=CxDCVB=C
12 simprr x=AB=CxDCVCV
13 11 12 eqeltrd x=AB=CxDCVBV
14 eqid xDB=xDB
15 14 fvmpt2 xDBVxDBx=B
16 10 13 15 syl2anc x=AB=CxDCVxDBx=B
17 simpll x=AB=CxDCVx=A
18 17 fveq2d x=AB=CxDCVxDBx=xDBA
19 16 18 11 3eqtr3d x=AB=CxDCVxDBA=C
20 19 exp43 x=AB=CxDCVxDBA=C
21 20 a2i x=AB=Cx=AxDCVxDBA=C
22 21 com23 x=AB=CxDx=ACVxDBA=C
23 22 sps xx=AB=CxDx=ACVxDBA=C
24 5 9 23 rexlimd xx=AB=CxDx=ACVxDBA=C
25 4 24 syl7 xx=AB=CxDx=ACVxDBA=C
26 3 25 biimtrid xx=AB=CADCVxDBA=C
27 26 imp32 xx=AB=CADCVxDBA=C
28 27 3adant2 xx=AB=CF=xDBADCVxDBA=C
29 2 28 eqtrd xx=AB=CF=xDBADCVFA=C