Metamath Proof Explorer


Theorem fvpr1g

Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017)

Ref Expression
Assertion fvpr1g AVCWABACBDA=C

Proof

Step Hyp Ref Expression
1 df-pr ACBD=ACBD
2 1 fveq1i ACBDA=ACBDA
3 necom ABBA
4 fvunsn BAACBDA=ACA
5 3 4 sylbi ABACBDA=ACA
6 2 5 eqtrid ABACBDA=ACA
7 6 3ad2ant3 AVCWABACBDA=ACA
8 fvsng AVCWACA=C
9 8 3adant3 AVCWABACA=C
10 7 9 eqtrd AVCWABACBDA=C