Metamath Proof Explorer


Theorem fzm1

Description: Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion fzm1 NMKMNKMN1K=N

Proof

Step Hyp Ref Expression
1 oveq1 N=MNN=MN
2 1 eleq2d N=MKNNKMN
3 elfz1eq KNNK=N
4 2 3 syl6bir N=MKMNK=N
5 olc K=NKMN1K=N
6 4 5 syl6 N=MKMNKMN1K=N
7 6 adantl NMN=MKMNKMN1K=N
8 noel ¬K
9 eluzelz NMN
10 9 adantr NMN=MN
11 10 zred NMN=MN
12 11 ltm1d NMN=MN1<N
13 breq2 N=MN1<NN1<M
14 13 adantl NMN=MN1<NN1<M
15 12 14 mpbid NMN=MN1<M
16 eluzel2 NMM
17 1zzd NMN=M1
18 10 17 zsubcld NMN=MN1
19 fzn MN1N1<MMN1=
20 16 18 19 syl2an2r NMN=MN1<MMN1=
21 15 20 mpbid NMN=MMN1=
22 21 eleq2d NMN=MKMN1K
23 8 22 mtbiri NMN=M¬KMN1
24 23 pm2.21d NMN=MKMN1KMN
25 eluzfz2 NMNMN
26 25 ad2antrr NMN=MK=NNMN
27 eleq1 K=NKMNNMN
28 27 adantl NMN=MK=NKMNNMN
29 26 28 mpbird NMN=MK=NKMN
30 29 ex NMN=MK=NKMN
31 24 30 jaod NMN=MKMN1K=NKMN
32 7 31 impbid NMN=MKMNKMN1K=N
33 elfzp1 N1MKMN-1+1KMN1K=N-1+1
34 33 adantl NMN1MKMN-1+1KMN1K=N-1+1
35 9 adantr NMN1MN
36 35 zcnd NMN1MN
37 npcan1 NN-1+1=N
38 36 37 syl NMN1MN-1+1=N
39 38 oveq2d NMN1MMN-1+1=MN
40 39 eleq2d NMN1MKMN-1+1KMN
41 38 eqeq2d NMN1MK=N-1+1K=N
42 41 orbi2d NMN1MKMN1K=N-1+1KMN1K=N
43 34 40 42 3bitr3d NMN1MKMNKMN1K=N
44 uzm1 NMN=MN1M
45 32 43 44 mpjaodan NMKMNKMN1K=N