Description: Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | fzm1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |
|
2 | 1 | eleq2d | |
3 | elfz1eq | |
|
4 | 2 3 | syl6bir | |
5 | olc | |
|
6 | 4 5 | syl6 | |
7 | 6 | adantl | |
8 | noel | |
|
9 | eluzelz | |
|
10 | 9 | adantr | |
11 | 10 | zred | |
12 | 11 | ltm1d | |
13 | breq2 | |
|
14 | 13 | adantl | |
15 | 12 14 | mpbid | |
16 | eluzel2 | |
|
17 | 1zzd | |
|
18 | 10 17 | zsubcld | |
19 | fzn | |
|
20 | 16 18 19 | syl2an2r | |
21 | 15 20 | mpbid | |
22 | 21 | eleq2d | |
23 | 8 22 | mtbiri | |
24 | 23 | pm2.21d | |
25 | eluzfz2 | |
|
26 | 25 | ad2antrr | |
27 | eleq1 | |
|
28 | 27 | adantl | |
29 | 26 28 | mpbird | |
30 | 29 | ex | |
31 | 24 30 | jaod | |
32 | 7 31 | impbid | |
33 | elfzp1 | |
|
34 | 33 | adantl | |
35 | 9 | adantr | |
36 | 35 | zcnd | |
37 | npcan1 | |
|
38 | 36 37 | syl | |
39 | 38 | oveq2d | |
40 | 39 | eleq2d | |
41 | 38 | eqeq2d | |
42 | 41 | orbi2d | |
43 | 34 40 42 | 3bitr3d | |
44 | uzm1 | |
|
45 | 32 43 44 | mpjaodan | |