Metamath Proof Explorer


Theorem fzpreddisj

Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019)

Ref Expression
Assertion fzpreddisj NMMM+1N=

Proof

Step Hyp Ref Expression
1 incom MM+1N=M+1NM
2 0lt1 0<1
3 0re 0
4 1re 1
5 3 4 ltnlei 0<1¬10
6 2 5 mpbi ¬10
7 eluzel2 NMM
8 7 zred NMM
9 leaddle0 M1M+1M10
10 8 4 9 sylancl NMM+1M10
11 6 10 mtbiri NM¬M+1M
12 11 intnanrd NM¬M+1MMN
13 12 intnand NM¬M+1NMM+1MMN
14 elfz2 MM+1NM+1NMM+1MMN
15 13 14 sylnibr NM¬MM+1N
16 disjsn M+1NM=¬MM+1N
17 15 16 sylibr NMM+1NM=
18 1 17 eqtrid NMMM+1N=