Metamath Proof Explorer


Theorem fzsdom2

Description: Condition for finite ranges to have a strict dominance relation. (Contributed by Stefan O'Rear, 12-Sep-2014) (Revised by Mario Carneiro, 15-Apr-2015)

Ref Expression
Assertion fzsdom2 B A C B < C A B A C

Proof

Step Hyp Ref Expression
1 eluzelz B A B
2 1 ad2antrr B A C B < C B
3 2 zred B A C B < C B
4 eluzel2 B A A
5 4 ad2antrr B A C B < C A
6 5 zred B A C B < C A
7 3 6 resubcld B A C B < C B A
8 simplr B A C B < C C
9 8 zred B A C B < C C
10 9 6 resubcld B A C B < C C A
11 1red B A C B < C 1
12 simpr B A C B < C B < C
13 3 9 6 12 ltsub1dd B A C B < C B A < C A
14 7 10 11 13 ltadd1dd B A C B < C B - A + 1 < C - A + 1
15 hashfz B A A B = B - A + 1
16 15 ad2antrr B A C B < C A B = B - A + 1
17 3 9 12 ltled B A C B < C B C
18 eluz2 C B B C B C
19 2 8 17 18 syl3anbrc B A C B < C C B
20 simpll B A C B < C B A
21 uztrn C B B A C A
22 19 20 21 syl2anc B A C B < C C A
23 hashfz C A A C = C - A + 1
24 22 23 syl B A C B < C A C = C - A + 1
25 14 16 24 3brtr4d B A C B < C A B < A C
26 fzfi A B Fin
27 fzfi A C Fin
28 hashsdom A B Fin A C Fin A B < A C A B A C
29 26 27 28 mp2an A B < A C A B A C
30 25 29 sylib B A C B < C A B A C