Metamath Proof Explorer


Theorem fzsdom2

Description: Condition for finite ranges to have a strict dominance relation. (Contributed by Stefan O'Rear, 12-Sep-2014) (Revised by Mario Carneiro, 15-Apr-2015)

Ref Expression
Assertion fzsdom2 BACB<CABAC

Proof

Step Hyp Ref Expression
1 eluzelz BAB
2 1 ad2antrr BACB<CB
3 2 zred BACB<CB
4 eluzel2 BAA
5 4 ad2antrr BACB<CA
6 5 zred BACB<CA
7 3 6 resubcld BACB<CBA
8 simplr BACB<CC
9 8 zred BACB<CC
10 9 6 resubcld BACB<CCA
11 1red BACB<C1
12 simpr BACB<CB<C
13 3 9 6 12 ltsub1dd BACB<CBA<CA
14 7 10 11 13 ltadd1dd BACB<CB-A+1<C-A+1
15 hashfz BAAB=B-A+1
16 15 ad2antrr BACB<CAB=B-A+1
17 3 9 12 ltled BACB<CBC
18 eluz2 CBBCBC
19 2 8 17 18 syl3anbrc BACB<CCB
20 simpll BACB<CBA
21 uztrn CBBACA
22 19 20 21 syl2anc BACB<CCA
23 hashfz CAAC=C-A+1
24 22 23 syl BACB<CAC=C-A+1
25 14 16 24 3brtr4d BACB<CAB<AC
26 fzfi ABFin
27 fzfi ACFin
28 hashsdom ABFinACFinAB<ACABAC
29 26 27 28 mp2an AB<ACABAC
30 25 29 sylib BACB<CABAC