Metamath Proof Explorer


Theorem fzto1st1

Description: Special case where the permutation defined in psgnfzto1st is the identity. (Contributed by Thierry Arnoux, 21-Aug-2020)

Ref Expression
Hypotheses psgnfzto1st.d D=1N
psgnfzto1st.p P=iDifi=1IifiIi1i
Assertion fzto1st1 I=1P=ID

Proof

Step Hyp Ref Expression
1 psgnfzto1st.d D=1N
2 psgnfzto1st.p P=iDifi=1IifiIi1i
3 simpll I=1iDi=1I=1
4 simpr I=1iDi=1i=1
5 3 4 eqtr4d I=1iDi=1I=i
6 simpr I=1iD¬i=1iIiI
7 simplll I=1iD¬i=1iII=1
8 6 7 breqtrd I=1iD¬i=1iIi1
9 simpllr I=1iD¬i=1iIiD
10 9 1 eleqtrdi I=1iD¬i=1iIi1N
11 elfzle1 i1N1i
12 10 11 syl I=1iD¬i=1iI1i
13 fz1ssnn 1N
14 13 10 sselid I=1iD¬i=1iIi
15 14 nnred I=1iD¬i=1iIi
16 1red I=1iD¬i=1iI1
17 15 16 letri3d I=1iD¬i=1iIi=1i11i
18 8 12 17 mpbir2and I=1iD¬i=1iIi=1
19 simplr I=1iD¬i=1iI¬i=1
20 18 19 pm2.21dd I=1iD¬i=1iIi1=i
21 eqidd I=1iD¬i=1¬iIi=i
22 20 21 ifeqda I=1iD¬i=1ifiIi1i=i
23 5 22 ifeqda I=1iDifi=1IifiIi1i=i
24 23 mpteq2dva I=1iDifi=1IifiIi1i=iDi
25 mptresid ID=iDi
26 24 2 25 3eqtr4g I=1P=ID