Metamath Proof Explorer


Theorem ge0xrre

Description: A nonnegative extended real that is not +oo is a real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion ge0xrre A0+∞A+∞A

Proof

Step Hyp Ref Expression
1 rge0ssre 0+∞
2 0xr 0*
3 2 a1i A0+∞A+∞0*
4 pnfxr +∞*
5 4 a1i A0+∞A+∞+∞*
6 eliccxr A0+∞A*
7 6 adantr A0+∞A+∞A*
8 2 a1i A0+∞0*
9 4 a1i A0+∞+∞*
10 id A0+∞A0+∞
11 iccgelb 0*+∞*A0+∞0A
12 8 9 10 11 syl3anc A0+∞0A
13 12 adantr A0+∞A+∞0A
14 pnfge A*A+∞
15 6 14 syl A0+∞A+∞
16 15 adantr A0+∞A+∞A+∞
17 simpr A0+∞A+∞A+∞
18 7 5 16 17 xrleneltd A0+∞A+∞A<+∞
19 3 5 7 13 18 elicod A0+∞A+∞A0+∞
20 1 19 sselid A0+∞A+∞A