Metamath Proof Explorer


Theorem geo2sum2

Description: The value of the finite geometric series 1 + 2 + 4 + 8 + ... + 2 ^ ( N - 1 ) . (Contributed by Mario Carneiro, 7-Sep-2016)

Ref Expression
Assertion geo2sum2 N0k0..^N2k=2N1

Proof

Step Hyp Ref Expression
1 nn0z N0N
2 fzoval N0..^N=0N1
3 1 2 syl N00..^N=0N1
4 3 sumeq1d N0k0..^N2k=k=0N12k
5 2cn 2
6 5 a1i N02
7 1ne2 12
8 7 necomi 21
9 8 a1i N021
10 id N0N0
11 6 9 10 geoser N0k=0N12k=12N12
12 6 10 expcld N02N
13 ax-1cn 1
14 13 a1i N01
15 12 14 subcld N02N1
16 ax-1ne0 10
17 16 a1i N010
18 15 14 17 div2negd N02N11=2N11
19 12 14 negsubdi2d N02N1=12N
20 2m1e1 21=1
21 20 negeqi 21=1
22 5 13 negsubdi2i 21=12
23 21 22 eqtr3i 1=12
24 23 a1i N01=12
25 19 24 oveq12d N02N11=12N12
26 15 div1d N02N11=2N1
27 18 25 26 3eqtr3d N012N12=2N1
28 4 11 27 3eqtrd N0k0..^N2k=2N1