Description: If the order of every group element is bounded by N , the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gexod.1 | |
|
gexod.2 | |
||
gexod.3 | |
||
Assertion | gexcl3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexod.1 | |
|
2 | gexod.2 | |
|
3 | gexod.3 | |
|
4 | simpl | |
|
5 | 1 | grpbn0 | |
6 | r19.2z | |
|
7 | 5 6 | sylan | |
8 | elfzuz2 | |
|
9 | nnuz | |
|
10 | 8 9 | eleqtrrdi | |
11 | 10 | rexlimivw | |
12 | 7 11 | syl | |
13 | 12 | nnnn0d | |
14 | 13 | faccld | |
15 | elfzuzb | |
|
16 | elnnuz | |
|
17 | dvdsfac | |
|
18 | 16 17 | sylanbr | |
19 | 15 18 | sylbi | |
20 | 19 | adantl | |
21 | simpll | |
|
22 | simplr | |
|
23 | 10 | adantl | |
24 | 23 | nnnn0d | |
25 | 24 | faccld | |
26 | 25 | nnzd | |
27 | eqid | |
|
28 | eqid | |
|
29 | 1 3 27 28 | oddvds | |
30 | 21 22 26 29 | syl3anc | |
31 | 20 30 | mpbid | |
32 | 31 | ex | |
33 | 32 | ralimdva | |
34 | 33 | imp | |
35 | 1 2 27 28 | gexlem2 | |
36 | 4 14 34 35 | syl3anc | |
37 | elfznn | |
|
38 | 36 37 | syl | |