Metamath Proof Explorer


Theorem gexcl3

Description: If the order of every group element is bounded by N , the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexod.1 X=BaseG
gexod.2 E=gExG
gexod.3 O=odG
Assertion gexcl3 GGrpxXOx1NE

Proof

Step Hyp Ref Expression
1 gexod.1 X=BaseG
2 gexod.2 E=gExG
3 gexod.3 O=odG
4 simpl GGrpxXOx1NGGrp
5 1 grpbn0 GGrpX
6 r19.2z XxXOx1NxXOx1N
7 5 6 sylan GGrpxXOx1NxXOx1N
8 elfzuz2 Ox1NN1
9 nnuz =1
10 8 9 eleqtrrdi Ox1NN
11 10 rexlimivw xXOx1NN
12 7 11 syl GGrpxXOx1NN
13 12 nnnn0d GGrpxXOx1NN0
14 13 faccld GGrpxXOx1NN!
15 elfzuzb Ox1NOx1NOx
16 elnnuz OxOx1
17 dvdsfac OxNOxOxN!
18 16 17 sylanbr Ox1NOxOxN!
19 15 18 sylbi Ox1NOxN!
20 19 adantl GGrpxXOx1NOxN!
21 simpll GGrpxXOx1NGGrp
22 simplr GGrpxXOx1NxX
23 10 adantl GGrpxXOx1NN
24 23 nnnn0d GGrpxXOx1NN0
25 24 faccld GGrpxXOx1NN!
26 25 nnzd GGrpxXOx1NN!
27 eqid G=G
28 eqid 0G=0G
29 1 3 27 28 oddvds GGrpxXN!OxN!N!Gx=0G
30 21 22 26 29 syl3anc GGrpxXOx1NOxN!N!Gx=0G
31 20 30 mpbid GGrpxXOx1NN!Gx=0G
32 31 ex GGrpxXOx1NN!Gx=0G
33 32 ralimdva GGrpxXOx1NxXN!Gx=0G
34 33 imp GGrpxXOx1NxXN!Gx=0G
35 1 2 27 28 gexlem2 GGrpN!xXN!Gx=0GE1N!
36 4 14 34 35 syl3anc GGrpxXOx1NE1N!
37 elfznn E1N!E
38 36 37 syl GGrpxXOx1NE