| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gexod.1 |  | 
						
							| 2 |  | gexod.2 |  | 
						
							| 3 |  | gexod.3 |  | 
						
							| 4 |  | simpl |  | 
						
							| 5 | 1 | grpbn0 |  | 
						
							| 6 |  | r19.2z |  | 
						
							| 7 | 5 6 | sylan |  | 
						
							| 8 |  | elfzuz2 |  | 
						
							| 9 |  | nnuz |  | 
						
							| 10 | 8 9 | eleqtrrdi |  | 
						
							| 11 | 10 | rexlimivw |  | 
						
							| 12 | 7 11 | syl |  | 
						
							| 13 | 12 | nnnn0d |  | 
						
							| 14 | 13 | faccld |  | 
						
							| 15 |  | elfzuzb |  | 
						
							| 16 |  | elnnuz |  | 
						
							| 17 |  | dvdsfac |  | 
						
							| 18 | 16 17 | sylanbr |  | 
						
							| 19 | 15 18 | sylbi |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 |  | simpll |  | 
						
							| 22 |  | simplr |  | 
						
							| 23 | 10 | adantl |  | 
						
							| 24 | 23 | nnnn0d |  | 
						
							| 25 | 24 | faccld |  | 
						
							| 26 | 25 | nnzd |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 1 3 27 28 | oddvds |  | 
						
							| 30 | 21 22 26 29 | syl3anc |  | 
						
							| 31 | 20 30 | mpbid |  | 
						
							| 32 | 31 | ex |  | 
						
							| 33 | 32 | ralimdva |  | 
						
							| 34 | 33 | imp |  | 
						
							| 35 | 1 2 27 28 | gexlem2 |  | 
						
							| 36 | 4 14 34 35 | syl3anc |  | 
						
							| 37 |  | elfznn |  | 
						
							| 38 | 36 37 | syl |  |