Metamath Proof Explorer


Theorem gexnnod

Description: Every group element has finite order if the exponent is finite. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexod.1 X=BaseG
gexod.2 E=gExG
gexod.3 O=odG
Assertion gexnnod GGrpEAXOA

Proof

Step Hyp Ref Expression
1 gexod.1 X=BaseG
2 gexod.2 E=gExG
3 gexod.3 O=odG
4 nnne0 EE0
5 4 3ad2ant2 GGrpEAXE0
6 nnz EE
7 6 3ad2ant2 GGrpEAXE
8 0dvds E0EE=0
9 7 8 syl GGrpEAX0EE=0
10 9 necon3bbid GGrpEAX¬0EE0
11 5 10 mpbird GGrpEAX¬0E
12 1 2 3 gexod GGrpAXOAE
13 12 3adant2 GGrpEAXOAE
14 breq1 OA=0OAE0E
15 13 14 syl5ibcom GGrpEAXOA=00E
16 11 15 mtod GGrpEAX¬OA=0
17 1 3 odcl AXOA0
18 17 3ad2ant3 GGrpEAXOA0
19 elnn0 OA0OAOA=0
20 18 19 sylib GGrpEAXOAOA=0
21 20 ord GGrpEAX¬OAOA=0
22 16 21 mt3d GGrpEAXOA