Description: Every group element has finite order if the exponent is finite. (Contributed by Mario Carneiro, 24-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gexod.1 | |
|
gexod.2 | |
||
gexod.3 | |
||
Assertion | gexnnod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexod.1 | |
|
2 | gexod.2 | |
|
3 | gexod.3 | |
|
4 | nnne0 | |
|
5 | 4 | 3ad2ant2 | |
6 | nnz | |
|
7 | 6 | 3ad2ant2 | |
8 | 0dvds | |
|
9 | 7 8 | syl | |
10 | 9 | necon3bbid | |
11 | 5 10 | mpbird | |
12 | 1 2 3 | gexod | |
13 | 12 | 3adant2 | |
14 | breq1 | |
|
15 | 13 14 | syl5ibcom | |
16 | 11 15 | mtod | |
17 | 1 3 | odcl | |
18 | 17 | 3ad2ant3 | |
19 | elnn0 | |
|
20 | 18 19 | sylib | |
21 | 20 | ord | |
22 | 16 21 | mt3d | |