Metamath Proof Explorer


Theorem gexnnod

Description: Every group element has finite order if the exponent is finite. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexod.1 𝑋 = ( Base ‘ 𝐺 )
gexod.2 𝐸 = ( gEx ‘ 𝐺 )
gexod.3 𝑂 = ( od ‘ 𝐺 )
Assertion gexnnod ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 gexod.1 𝑋 = ( Base ‘ 𝐺 )
2 gexod.2 𝐸 = ( gEx ‘ 𝐺 )
3 gexod.3 𝑂 = ( od ‘ 𝐺 )
4 nnne0 ( 𝐸 ∈ ℕ → 𝐸 ≠ 0 )
5 4 3ad2ant2 ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → 𝐸 ≠ 0 )
6 nnz ( 𝐸 ∈ ℕ → 𝐸 ∈ ℤ )
7 6 3ad2ant2 ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → 𝐸 ∈ ℤ )
8 0dvds ( 𝐸 ∈ ℤ → ( 0 ∥ 𝐸𝐸 = 0 ) )
9 7 8 syl ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → ( 0 ∥ 𝐸𝐸 = 0 ) )
10 9 necon3bbid ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → ( ¬ 0 ∥ 𝐸𝐸 ≠ 0 ) )
11 5 10 mpbird ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → ¬ 0 ∥ 𝐸 )
12 1 2 3 gexod ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) ∥ 𝐸 )
13 12 3adant2 ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) ∥ 𝐸 )
14 breq1 ( ( 𝑂𝐴 ) = 0 → ( ( 𝑂𝐴 ) ∥ 𝐸 ↔ 0 ∥ 𝐸 ) )
15 13 14 syl5ibcom ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → ( ( 𝑂𝐴 ) = 0 → 0 ∥ 𝐸 ) )
16 11 15 mtod ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → ¬ ( 𝑂𝐴 ) = 0 )
17 1 3 odcl ( 𝐴𝑋 → ( 𝑂𝐴 ) ∈ ℕ0 )
18 17 3ad2ant3 ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) ∈ ℕ0 )
19 elnn0 ( ( 𝑂𝐴 ) ∈ ℕ0 ↔ ( ( 𝑂𝐴 ) ∈ ℕ ∨ ( 𝑂𝐴 ) = 0 ) )
20 18 19 sylib ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → ( ( 𝑂𝐴 ) ∈ ℕ ∨ ( 𝑂𝐴 ) = 0 ) )
21 20 ord ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → ( ¬ ( 𝑂𝐴 ) ∈ ℕ → ( 𝑂𝐴 ) = 0 ) )
22 16 21 mt3d ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) ∈ ℕ )