Metamath Proof Explorer


Theorem gexval

Description: Value of the exponent of a group. (Contributed by Mario Carneiro, 23-Apr-2016) (Revised by AV, 26-Sep-2020)

Ref Expression
Hypotheses gexval.1 X=BaseG
gexval.2 ·˙=G
gexval.3 0˙=0G
gexval.4 E=gExG
gexval.i I=y|xXy·˙x=0˙
Assertion gexval GVE=ifI=0supI<

Proof

Step Hyp Ref Expression
1 gexval.1 X=BaseG
2 gexval.2 ·˙=G
3 gexval.3 0˙=0G
4 gexval.4 E=gExG
5 gexval.i I=y|xXy·˙x=0˙
6 df-gex gEx=gVy|xBasegygx=0g/iifi=0supi<
7 nnex V
8 7 rabex y|xBasegygx=0gV
9 8 a1i GVg=Gy|xBasegygx=0gV
10 simpr GVg=Gg=G
11 10 fveq2d GVg=GBaseg=BaseG
12 11 1 eqtr4di GVg=GBaseg=X
13 10 fveq2d GVg=Gg=G
14 13 2 eqtr4di GVg=Gg=·˙
15 14 oveqd GVg=Gygx=y·˙x
16 10 fveq2d GVg=G0g=0G
17 16 3 eqtr4di GVg=G0g=0˙
18 15 17 eqeq12d GVg=Gygx=0gy·˙x=0˙
19 12 18 raleqbidv GVg=GxBasegygx=0gxXy·˙x=0˙
20 19 rabbidv GVg=Gy|xBasegygx=0g=y|xXy·˙x=0˙
21 20 5 eqtr4di GVg=Gy|xBasegygx=0g=I
22 21 eqeq2d GVg=Gi=y|xBasegygx=0gi=I
23 22 biimpa GVg=Gi=y|xBasegygx=0gi=I
24 23 eqeq1d GVg=Gi=y|xBasegygx=0gi=I=
25 23 infeq1d GVg=Gi=y|xBasegygx=0gsupi<=supI<
26 24 25 ifbieq2d GVg=Gi=y|xBasegygx=0gifi=0supi<=ifI=0supI<
27 9 26 csbied GVg=Gy|xBasegygx=0g/iifi=0supi<=ifI=0supI<
28 elex GVGV
29 c0ex 0V
30 ltso <Or
31 30 infex supI<V
32 29 31 ifex ifI=0supI<V
33 32 a1i GVifI=0supI<V
34 6 27 28 33 fvmptd2 GVgExG=ifI=0supI<
35 4 34 eqtrid GVE=ifI=0supI<