Metamath Proof Explorer


Theorem gg-negcncf

Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypothesis gg-negcncf.1 F=xAx
Assertion gg-negcncf AF:Acn

Proof

Step Hyp Ref Expression
1 gg-negcncf.1 F=xAx
2 ssel2 AxAx
3 2 mulm1d AxA-1x=x
4 neg1cn 1
5 4 a1i AxA1
6 5 2 jca AxA1x
7 ovmul 1x-1a,babx=-1x
8 7 eqcomd 1x-1x=-1a,babx
9 6 8 syl AxA-1x=-1a,babx
10 9 eqeq1d AxA-1x=x-1a,babx=x
11 10 biimpd AxA-1x=x-1a,babx=x
12 3 11 mpd AxA-1a,babx=x
13 12 mpteq2dva AxA-1a,babx=xAx
14 13 1 eqtr4di AxA-1a,babx=F
15 eqid TopOpenfld=TopOpenfld
16 15 mpomulcn a,babTopOpenfld×tTopOpenfldCnTopOpenfld
17 16 a1i Aa,babTopOpenfld×tTopOpenfldCnTopOpenfld
18 ssid
19 cncfmptc 1AxA1:Acn
20 4 18 19 mp3an13 AxA1:Acn
21 cncfmptid AxAx:Acn
22 18 21 mpan2 AxAx:Acn
23 15 17 20 22 cncfmpt2f AxA-1a,babx:Acn
24 14 23 eqeltrrd AF:Acn