Metamath Proof Explorer


Theorem ghmid

Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmid.y Y=0S
ghmid.z 0˙=0T
Assertion ghmid FSGrpHomTFY=0˙

Proof

Step Hyp Ref Expression
1 ghmid.y Y=0S
2 ghmid.z 0˙=0T
3 ghmgrp1 FSGrpHomTSGrp
4 eqid BaseS=BaseS
5 4 1 grpidcl SGrpYBaseS
6 3 5 syl FSGrpHomTYBaseS
7 eqid +S=+S
8 eqid +T=+T
9 4 7 8 ghmlin FSGrpHomTYBaseSYBaseSFY+SY=FY+TFY
10 6 6 9 mpd3an23 FSGrpHomTFY+SY=FY+TFY
11 4 7 1 grplid SGrpYBaseSY+SY=Y
12 3 6 11 syl2anc FSGrpHomTY+SY=Y
13 12 fveq2d FSGrpHomTFY+SY=FY
14 10 13 eqtr3d FSGrpHomTFY+TFY=FY
15 ghmgrp2 FSGrpHomTTGrp
16 eqid BaseT=BaseT
17 4 16 ghmf FSGrpHomTF:BaseSBaseT
18 17 6 ffvelcdmd FSGrpHomTFYBaseT
19 16 8 2 grpid TGrpFYBaseTFY+TFY=FY0˙=FY
20 15 18 19 syl2anc FSGrpHomTFY+TFY=FY0˙=FY
21 14 20 mpbid FSGrpHomT0˙=FY
22 21 eqcomd FSGrpHomTFY=0˙