Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghmid.y | |
|
ghmid.z | |
||
Assertion | ghmid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmid.y | |
|
2 | ghmid.z | |
|
3 | ghmgrp1 | |
|
4 | eqid | |
|
5 | 4 1 | grpidcl | |
6 | 3 5 | syl | |
7 | eqid | |
|
8 | eqid | |
|
9 | 4 7 8 | ghmlin | |
10 | 6 6 9 | mpd3an23 | |
11 | 4 7 1 | grplid | |
12 | 3 6 11 | syl2anc | |
13 | 12 | fveq2d | |
14 | 10 13 | eqtr3d | |
15 | ghmgrp2 | |
|
16 | eqid | |
|
17 | 4 16 | ghmf | |
18 | 17 6 | ffvelcdmd | |
19 | 16 8 2 | grpid | |
20 | 15 18 19 | syl2anc | |
21 | 14 20 | mpbid | |
22 | 21 | eqcomd | |