| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmqusnsg.0 |
|
| 2 |
|
ghmqusnsg.f |
|
| 3 |
|
ghmqusnsg.k |
|
| 4 |
|
ghmqusnsg.q |
|
| 5 |
|
ghmqusnsg.j |
|
| 6 |
|
ghmqusnsg.n |
|
| 7 |
|
ghmqusnsg.1 |
|
| 8 |
|
ghmqusnsglem2.y |
|
| 9 |
4
|
a1i |
|
| 10 |
|
eqidd |
|
| 11 |
|
ovexd |
|
| 12 |
|
ghmgrp1 |
|
| 13 |
2 12
|
syl |
|
| 14 |
9 10 11 13
|
qusbas |
|
| 15 |
8 14
|
eleqtrrd |
|
| 16 |
|
elqsg |
|
| 17 |
16
|
biimpa |
|
| 18 |
8 15 17
|
syl2anc |
|
| 19 |
|
nsgsubg |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
20 21
|
eqger |
|
| 23 |
7 19 22
|
3syl |
|
| 24 |
23
|
ad2antrr |
|
| 25 |
|
simplr |
|
| 26 |
|
ecref |
|
| 27 |
24 25 26
|
syl2anc |
|
| 28 |
|
simpr |
|
| 29 |
27 28
|
eleqtrrd |
|
| 30 |
28
|
fveq2d |
|
| 31 |
2
|
ad2antrr |
|
| 32 |
6
|
ad2antrr |
|
| 33 |
7
|
ad2antrr |
|
| 34 |
1 31 3 4 5 32 33 25
|
ghmqusnsglem1 |
|
| 35 |
30 34
|
eqtrd |
|
| 36 |
29 35
|
jca |
|
| 37 |
36
|
expl |
|
| 38 |
37
|
reximdv2 |
|
| 39 |
18 38
|
mpd |
|