| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmqusnsg.0 |  | 
						
							| 2 |  | ghmqusnsg.f |  | 
						
							| 3 |  | ghmqusnsg.k |  | 
						
							| 4 |  | ghmqusnsg.q |  | 
						
							| 5 |  | ghmqusnsg.j |  | 
						
							| 6 |  | ghmqusnsg.n |  | 
						
							| 7 |  | ghmqusnsg.1 |  | 
						
							| 8 |  | ghmqusnsglem2.y |  | 
						
							| 9 | 4 | a1i |  | 
						
							| 10 |  | eqidd |  | 
						
							| 11 |  | ovexd |  | 
						
							| 12 |  | ghmgrp1 |  | 
						
							| 13 | 2 12 | syl |  | 
						
							| 14 | 9 10 11 13 | qusbas |  | 
						
							| 15 | 8 14 | eleqtrrd |  | 
						
							| 16 |  | elqsg |  | 
						
							| 17 | 16 | biimpa |  | 
						
							| 18 | 8 15 17 | syl2anc |  | 
						
							| 19 |  | nsgsubg |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 20 21 | eqger |  | 
						
							| 23 | 7 19 22 | 3syl |  | 
						
							| 24 | 23 | ad2antrr |  | 
						
							| 25 |  | simplr |  | 
						
							| 26 |  | ecref |  | 
						
							| 27 | 24 25 26 | syl2anc |  | 
						
							| 28 |  | simpr |  | 
						
							| 29 | 27 28 | eleqtrrd |  | 
						
							| 30 | 28 | fveq2d |  | 
						
							| 31 | 2 | ad2antrr |  | 
						
							| 32 | 6 | ad2antrr |  | 
						
							| 33 | 7 | ad2antrr |  | 
						
							| 34 | 1 31 3 4 5 32 33 25 | ghmqusnsglem1 |  | 
						
							| 35 | 30 34 | eqtrd |  | 
						
							| 36 | 29 35 | jca |  | 
						
							| 37 | 36 | expl |  | 
						
							| 38 | 37 | reximdv2 |  | 
						
							| 39 | 18 38 | mpd |  |