Metamath Proof Explorer


Theorem gneispace0nelrn2

Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
Assertion gneispace0nelrn2 F A P dom F F P

Proof

Step Hyp Ref Expression
1 gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
2 1 gneispace0nelrn F A p dom F F p
3 fveq2 p = P F p = F P
4 3 neeq1d p = P F p F P
5 4 rspccv p dom F F p P dom F F P
6 2 5 syl F A P dom F F P
7 6 imp F A P dom F F P