Metamath Proof Explorer


Theorem gneispace0nelrn2

Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
Assertion gneispace0nelrn2 FAPdomFFP

Proof

Step Hyp Ref Expression
1 gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
2 1 gneispace0nelrn FApdomFFp
3 fveq2 p=PFp=FP
4 3 neeq1d p=PFpFP
5 4 rspccv pdomFFpPdomFFP
6 2 5 syl FAPdomFFP
7 6 imp FAPdomFFP