Metamath Proof Explorer


Theorem gneispace2

Description: The predicate that F is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
Assertion gneispace2 F V F A F : dom F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p

Proof

Step Hyp Ref Expression
1 gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
2 id f = F f = F
3 dmeq f = F dom f = dom F
4 3 pweqd f = F 𝒫 dom f = 𝒫 dom F
5 4 difeq1d f = F 𝒫 dom f = 𝒫 dom F
6 5 pweqd f = F 𝒫 𝒫 dom f = 𝒫 𝒫 dom F
7 6 difeq1d f = F 𝒫 𝒫 dom f = 𝒫 𝒫 dom F
8 2 3 7 feq123d f = F f : dom f 𝒫 𝒫 dom f F : dom F 𝒫 𝒫 dom F
9 fveq1 f = F f p = F p
10 9 eleq2d f = F s f p s F p
11 10 imbi2d f = F n s s f p n s s F p
12 4 11 raleqbidv f = F s 𝒫 dom f n s s f p s 𝒫 dom F n s s F p
13 12 anbi2d f = F p n s 𝒫 dom f n s s f p p n s 𝒫 dom F n s s F p
14 9 13 raleqbidv f = F n f p p n s 𝒫 dom f n s s f p n F p p n s 𝒫 dom F n s s F p
15 3 14 raleqbidv f = F p dom f n f p p n s 𝒫 dom f n s s f p p dom F n F p p n s 𝒫 dom F n s s F p
16 8 15 anbi12d f = F f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p F : dom F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p
17 16 1 elab2g F V F A F : dom F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p