Metamath Proof Explorer


Theorem gneispacess2

Description: All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
Assertion gneispacess2 FAPdomFNFPS𝒫domFNSSFP

Proof

Step Hyp Ref Expression
1 gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
2 1 gneispacess FApdomFnFps𝒫domFnssFp
3 fveq2 p=PFp=FP
4 3 eleq2d p=PsFpsFP
5 4 imbi2d p=PnssFpnssFP
6 5 ralbidv p=Ps𝒫domFnssFps𝒫domFnssFP
7 3 6 raleqbidv p=PnFps𝒫domFnssFpnFPs𝒫domFnssFP
8 7 rspccv pdomFnFps𝒫domFnssFpPdomFnFPs𝒫domFnssFP
9 2 8 syl FAPdomFnFPs𝒫domFnssFP
10 sseq1 n=NnsNs
11 10 imbi1d n=NnssFPNssFP
12 11 ralbidv n=Ns𝒫domFnssFPs𝒫domFNssFP
13 12 rspccv nFPs𝒫domFnssFPNFPs𝒫domFNssFP
14 sseq2 s=SNsNS
15 eleq1 s=SsFPSFP
16 14 15 imbi12d s=SNssFPNSSFP
17 16 rspccv s𝒫domFNssFPS𝒫domFNSSFP
18 13 17 syl6 nFPs𝒫domFnssFPNFPS𝒫domFNSSFP
19 18 3impd nFPs𝒫domFnssFPNFPS𝒫domFNSSFP
20 9 19 syl6 FAPdomFNFPS𝒫domFNSSFP
21 20 imp31 FAPdomFNFPS𝒫domFNSSFP