Step |
Hyp |
Ref |
Expression |
1 |
|
gpg5gricstgr3.g |
Could not format G = ( 5 gPetersenGr K ) : No typesetting found for |- G = ( 5 gPetersenGr K ) with typecode |- |
2 |
|
5eluz3 |
|
3 |
|
2z |
|
4 |
|
fzval3 |
|
5 |
3 4
|
ax-mp |
|
6 |
|
2p1e3 |
|
7 |
6
|
oveq2i |
|
8 |
|
ceil5half3 |
|
9 |
8
|
eqcomi |
|
10 |
9
|
oveq2i |
|
11 |
5 7 10
|
3eqtri |
|
12 |
11
|
eleq2i |
|
13 |
12
|
biimpi |
|
14 |
|
gpgusgra |
Could not format ( ( 5 e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( 5 gPetersenGr K ) e. USGraph ) : No typesetting found for |- ( ( 5 e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( 5 gPetersenGr K ) e. USGraph ) with typecode |- |
15 |
1 14
|
eqeltrid |
|
16 |
2 13 15
|
sylancr |
|
17 |
16
|
anim1i |
|
18 |
|
eqidd |
|
19 |
13
|
adantr |
|
20 |
|
simpr |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
21 1 22 23 24
|
gpg5nbgr3star |
|
26 |
18 19 20 25
|
syl3anc |
|
27 |
|
eqid |
|
28 |
|
3nn0 |
|
29 |
|
eqid |
Could not format ( StarGr ` 3 ) = ( StarGr ` 3 ) : No typesetting found for |- ( StarGr ` 3 ) = ( StarGr ` 3 ) with typecode |- |
30 |
|
eqid |
Could not format ( Vtx ` ( StarGr ` 3 ) ) = ( Vtx ` ( StarGr ` 3 ) ) : No typesetting found for |- ( Vtx ` ( StarGr ` 3 ) ) = ( Vtx ` ( StarGr ` 3 ) ) with typecode |- |
31 |
22 23 27 28 29 30 24
|
isubgr3stgr |
Could not format ( ( G e. USGraph /\ V e. ( Vtx ` G ) ) -> ( ( ( # ` ( G NeighbVtx V ) ) = 3 /\ A. x e. ( G NeighbVtx V ) A. y e. ( G NeighbVtx V ) { x , y } e/ ( Edg ` G ) ) -> ( G ISubGr ( G ClNeighbVtx V ) ) ~=gr ( StarGr ` 3 ) ) ) : No typesetting found for |- ( ( G e. USGraph /\ V e. ( Vtx ` G ) ) -> ( ( ( # ` ( G NeighbVtx V ) ) = 3 /\ A. x e. ( G NeighbVtx V ) A. y e. ( G NeighbVtx V ) { x , y } e/ ( Edg ` G ) ) -> ( G ISubGr ( G ClNeighbVtx V ) ) ~=gr ( StarGr ` 3 ) ) ) with typecode |- |
32 |
17 26 31
|
sylc |
Could not format ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx V ) ) ~=gr ( StarGr ` 3 ) ) : No typesetting found for |- ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx V ) ) ~=gr ( StarGr ` 3 ) ) with typecode |- |