Metamath Proof Explorer


Theorem griedg0ssusgr

Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020)

Ref Expression
Hypothesis griedg0prc.u U=ve|e:
Assertion griedg0ssusgr UUSGraph

Proof

Step Hyp Ref Expression
1 griedg0prc.u U=ve|e:
2 1 eleq2i gUgve|e:
3 elopab gve|e:veg=vee:
4 2 3 bitri gUveg=vee:
5 opex veV
6 5 a1i e:veV
7 vex vV
8 vex eV
9 7 8 opiedgfvi iEdgve=e
10 f0bi e:e=
11 10 biimpi e:e=
12 9 11 eqtrid e:iEdgve=
13 6 12 usgr0e e:veUSGraph
14 13 adantl g=vee:veUSGraph
15 eleq1 g=vegUSGraphveUSGraph
16 15 adantr g=vee:gUSGraphveUSGraph
17 14 16 mpbird g=vee:gUSGraph
18 17 exlimivv veg=vee:gUSGraph
19 4 18 sylbi gUgUSGraph
20 19 ssriv UUSGraph