Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | griedg0prc.u | |
|
Assertion | griedg0ssusgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | griedg0prc.u | |
|
2 | 1 | eleq2i | |
3 | elopab | |
|
4 | 2 3 | bitri | |
5 | opex | |
|
6 | 5 | a1i | |
7 | vex | |
|
8 | vex | |
|
9 | 7 8 | opiedgfvi | |
10 | f0bi | |
|
11 | 10 | biimpi | |
12 | 9 11 | eqtrid | |
13 | 6 12 | usgr0e | |
14 | 13 | adantl | |
15 | eleq1 | |
|
16 | 15 | adantr | |
17 | 14 16 | mpbird | |
18 | 17 | exlimivv | |
19 | 4 18 | sylbi | |
20 | 19 | ssriv | |