Metamath Proof Explorer


Theorem grpidval

Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses grpidval.b B=BaseG
grpidval.p +˙=+G
grpidval.o 0˙=0G
Assertion grpidval 0˙=ιe|eBxBe+˙x=xx+˙e=x

Proof

Step Hyp Ref Expression
1 grpidval.b B=BaseG
2 grpidval.p +˙=+G
3 grpidval.o 0˙=0G
4 fveq2 g=GBaseg=BaseG
5 4 1 eqtr4di g=GBaseg=B
6 5 eleq2d g=GeBasegeB
7 fveq2 g=G+g=+G
8 7 2 eqtr4di g=G+g=+˙
9 8 oveqd g=Ge+gx=e+˙x
10 9 eqeq1d g=Ge+gx=xe+˙x=x
11 8 oveqd g=Gx+ge=x+˙e
12 11 eqeq1d g=Gx+ge=xx+˙e=x
13 10 12 anbi12d g=Ge+gx=xx+ge=xe+˙x=xx+˙e=x
14 5 13 raleqbidv g=GxBasege+gx=xx+ge=xxBe+˙x=xx+˙e=x
15 6 14 anbi12d g=GeBasegxBasege+gx=xx+ge=xeBxBe+˙x=xx+˙e=x
16 15 iotabidv g=Gιe|eBasegxBasege+gx=xx+ge=x=ιe|eBxBe+˙x=xx+˙e=x
17 df-0g 0𝑔=gVιe|eBasegxBasege+gx=xx+ge=x
18 iotaex ιe|eBxBe+˙x=xx+˙e=xV
19 16 17 18 fvmpt GV0G=ιe|eBxBe+˙x=xx+˙e=x
20 fvprc ¬GV0G=
21 euex ∃!eeBxBe+˙x=xx+˙e=xeeBxBe+˙x=xx+˙e=x
22 n0i eB¬B=
23 fvprc ¬GVBaseG=
24 1 23 eqtrid ¬GVB=
25 22 24 nsyl2 eBGV
26 25 adantr eBxBe+˙x=xx+˙e=xGV
27 26 exlimiv eeBxBe+˙x=xx+˙e=xGV
28 21 27 syl ∃!eeBxBe+˙x=xx+˙e=xGV
29 iotanul ¬∃!eeBxBe+˙x=xx+˙e=xιe|eBxBe+˙x=xx+˙e=x=
30 28 29 nsyl5 ¬GVιe|eBxBe+˙x=xx+˙e=x=
31 20 30 eqtr4d ¬GV0G=ιe|eBxBe+˙x=xx+˙e=x
32 19 31 pm2.61i 0G=ιe|eBxBe+˙x=xx+˙e=x
33 3 32 eqtri 0˙=ιe|eBxBe+˙x=xx+˙e=x