Metamath Proof Explorer


Theorem grpinvfval

Description: The inverse function of a group. For a shorter proof using ax-rep , see grpinvfvalALT . (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 7-Aug-2013) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses grpinvval.b B=BaseG
grpinvval.p +˙=+G
grpinvval.o 0˙=0G
grpinvval.n N=invgG
Assertion grpinvfval N=xBιyB|y+˙x=0˙

Proof

Step Hyp Ref Expression
1 grpinvval.b B=BaseG
2 grpinvval.p +˙=+G
3 grpinvval.o 0˙=0G
4 grpinvval.n N=invgG
5 fveq2 g=GBaseg=BaseG
6 5 1 eqtr4di g=GBaseg=B
7 fveq2 g=G+g=+G
8 7 2 eqtr4di g=G+g=+˙
9 8 oveqd g=Gy+gx=y+˙x
10 fveq2 g=G0g=0G
11 10 3 eqtr4di g=G0g=0˙
12 9 11 eqeq12d g=Gy+gx=0gy+˙x=0˙
13 6 12 riotaeqbidv g=GιyBaseg|y+gx=0g=ιyB|y+˙x=0˙
14 6 13 mpteq12dv g=GxBasegιyBaseg|y+gx=0g=xBιyB|y+˙x=0˙
15 df-minusg invg=gVxBasegιyBaseg|y+gx=0g
16 1 fvexi BV
17 p0ex V
18 17 16 unex BV
19 ssun2 BB
20 riotacl ∃!yBy+˙x=0˙ιyB|y+˙x=0˙B
21 19 20 sselid ∃!yBy+˙x=0˙ιyB|y+˙x=0˙B
22 ssun1 B
23 riotaund ¬∃!yBy+˙x=0˙ιyB|y+˙x=0˙=
24 riotaex ιyB|y+˙x=0˙V
25 24 elsn ιyB|y+˙x=0˙ιyB|y+˙x=0˙=
26 23 25 sylibr ¬∃!yBy+˙x=0˙ιyB|y+˙x=0˙
27 22 26 sselid ¬∃!yBy+˙x=0˙ιyB|y+˙x=0˙B
28 21 27 pm2.61i ιyB|y+˙x=0˙B
29 28 rgenw xBιyB|y+˙x=0˙B
30 16 18 29 mptexw xBιyB|y+˙x=0˙V
31 14 15 30 fvmpt GVinvgG=xBιyB|y+˙x=0˙
32 fvprc ¬GVinvgG=
33 mpt0 xιyB|y+˙x=0˙=
34 32 33 eqtr4di ¬GVinvgG=xιyB|y+˙x=0˙
35 fvprc ¬GVBaseG=
36 1 35 eqtrid ¬GVB=
37 36 mpteq1d ¬GVxBιyB|y+˙x=0˙=xιyB|y+˙x=0˙
38 34 37 eqtr4d ¬GVinvgG=xBιyB|y+˙x=0˙
39 31 38 pm2.61i invgG=xBιyB|y+˙x=0˙
40 4 39 eqtri N=xBιyB|y+˙x=0˙