Description: The inverse function of a group. For a shorter proof using ax-rep , see grpinvfvalALT . (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 7-Aug-2013) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpinvval.b | |
|
grpinvval.p | |
||
grpinvval.o | |
||
grpinvval.n | |
||
Assertion | grpinvfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvval.b | |
|
2 | grpinvval.p | |
|
3 | grpinvval.o | |
|
4 | grpinvval.n | |
|
5 | fveq2 | |
|
6 | 5 1 | eqtr4di | |
7 | fveq2 | |
|
8 | 7 2 | eqtr4di | |
9 | 8 | oveqd | |
10 | fveq2 | |
|
11 | 10 3 | eqtr4di | |
12 | 9 11 | eqeq12d | |
13 | 6 12 | riotaeqbidv | |
14 | 6 13 | mpteq12dv | |
15 | df-minusg | |
|
16 | 1 | fvexi | |
17 | p0ex | |
|
18 | 17 16 | unex | |
19 | ssun2 | |
|
20 | riotacl | |
|
21 | 19 20 | sselid | |
22 | ssun1 | |
|
23 | riotaund | |
|
24 | riotaex | |
|
25 | 24 | elsn | |
26 | 23 25 | sylibr | |
27 | 22 26 | sselid | |
28 | 21 27 | pm2.61i | |
29 | 28 | rgenw | |
30 | 16 18 29 | mptexw | |
31 | 14 15 30 | fvmpt | |
32 | fvprc | |
|
33 | mpt0 | |
|
34 | 32 33 | eqtr4di | |
35 | fvprc | |
|
36 | 1 35 | eqtrid | |
37 | 36 | mpteq1d | |
38 | 34 37 | eqtr4d | |
39 | 31 38 | pm2.61i | |
40 | 4 39 | eqtri | |