Metamath Proof Explorer


Theorem grpinvfvalALT

Description: Shorter proof of grpinvfval using ax-rep . (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 7-Aug-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses grpinvval.b B=BaseG
grpinvval.p +˙=+G
grpinvval.o 0˙=0G
grpinvval.n N=invgG
Assertion grpinvfvalALT N=xBιyB|y+˙x=0˙

Proof

Step Hyp Ref Expression
1 grpinvval.b B=BaseG
2 grpinvval.p +˙=+G
3 grpinvval.o 0˙=0G
4 grpinvval.n N=invgG
5 fveq2 g=GBaseg=BaseG
6 5 1 eqtr4di g=GBaseg=B
7 fveq2 g=G+g=+G
8 7 2 eqtr4di g=G+g=+˙
9 8 oveqd g=Gy+gx=y+˙x
10 fveq2 g=G0g=0G
11 10 3 eqtr4di g=G0g=0˙
12 9 11 eqeq12d g=Gy+gx=0gy+˙x=0˙
13 6 12 riotaeqbidv g=GιyBaseg|y+gx=0g=ιyB|y+˙x=0˙
14 6 13 mpteq12dv g=GxBasegιyBaseg|y+gx=0g=xBιyB|y+˙x=0˙
15 df-minusg invg=gVxBasegιyBaseg|y+gx=0g
16 14 15 1 mptfvmpt GVinvgG=xBιyB|y+˙x=0˙
17 fvprc ¬GVinvgG=
18 mpt0 xιyB|y+˙x=0˙=
19 17 18 eqtr4di ¬GVinvgG=xιyB|y+˙x=0˙
20 fvprc ¬GVBaseG=
21 1 20 eqtrid ¬GVB=
22 21 mpteq1d ¬GVxBιyB|y+˙x=0˙=xιyB|y+˙x=0˙
23 19 22 eqtr4d ¬GVinvgG=xBιyB|y+˙x=0˙
24 16 23 pm2.61i invgG=xBιyB|y+˙x=0˙
25 4 24 eqtri N=xBιyB|y+˙x=0˙