| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grprcan.b |  | 
						
							| 2 |  | grprcan.p |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 | 1 2 3 | grpinvex |  | 
						
							| 5 | 4 | 3ad2antr3 |  | 
						
							| 6 |  | simprr |  | 
						
							| 7 | 6 | oveq1d |  | 
						
							| 8 |  | simpll |  | 
						
							| 9 | 1 2 | grpass |  | 
						
							| 10 | 8 9 | sylan |  | 
						
							| 11 |  | simplr1 |  | 
						
							| 12 |  | simplr3 |  | 
						
							| 13 |  | simprll |  | 
						
							| 14 | 10 11 12 13 | caovassd |  | 
						
							| 15 |  | simplr2 |  | 
						
							| 16 | 10 15 12 13 | caovassd |  | 
						
							| 17 | 7 14 16 | 3eqtr3d |  | 
						
							| 18 | 1 2 | grpcl |  | 
						
							| 19 | 8 18 | syl3an1 |  | 
						
							| 20 | 1 3 | grpidcl |  | 
						
							| 21 | 8 20 | syl |  | 
						
							| 22 | 1 2 3 | grplid |  | 
						
							| 23 | 8 22 | sylan |  | 
						
							| 24 | 1 2 3 | grpinvex |  | 
						
							| 25 | 8 24 | sylan |  | 
						
							| 26 |  | simpr |  | 
						
							| 27 | 13 | adantr |  | 
						
							| 28 |  | simprlr |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 19 21 23 10 25 26 27 29 | grpinva |  | 
						
							| 31 | 12 30 | mpdan |  | 
						
							| 32 | 31 | oveq2d |  | 
						
							| 33 | 31 | oveq2d |  | 
						
							| 34 | 17 32 33 | 3eqtr3d |  | 
						
							| 35 | 1 2 3 8 11 | grpridd |  | 
						
							| 36 | 1 2 3 8 15 | grpridd |  | 
						
							| 37 | 34 35 36 | 3eqtr3d |  | 
						
							| 38 | 37 | expr |  | 
						
							| 39 | 5 38 | rexlimddv |  | 
						
							| 40 |  | oveq1 |  | 
						
							| 41 | 39 40 | impbid1 |  |