Metamath Proof Explorer


Theorem grutsk1

Description: Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni .) (Contributed by Mario Carneiro, 17-Jun-2013)

Ref Expression
Assertion grutsk1 TTarskiTrTTUniv

Proof

Step Hyp Ref Expression
1 simpr TTarskiTrTTrT
2 tskpw TTarskixT𝒫xT
3 2 adantlr TTarskiTrTxT𝒫xT
4 tskpr TTarskixTyTxyT
5 4 3expa TTarskixTyTxyT
6 5 ralrimiva TTarskixTyTxyT
7 6 adantlr TTarskiTrTxTyTxyT
8 elmapg TTarskixTyTxy:xT
9 8 adantlr TTarskiTrTxTyTxy:xT
10 tskurn TTarskiTrTxTy:xTranyT
11 10 3expia TTarskiTrTxTy:xTranyT
12 9 11 sylbid TTarskiTrTxTyTxranyT
13 12 ralrimiv TTarskiTrTxTyTxranyT
14 3 7 13 3jca TTarskiTrTxT𝒫xTyTxyTyTxranyT
15 14 ralrimiva TTarskiTrTxT𝒫xTyTxyTyTxranyT
16 elgrug TTarskiTUnivTrTxT𝒫xTyTxyTyTxranyT
17 16 adantr TTarskiTrTTUnivTrTxT𝒫xTyTxyTyTxranyT
18 1 15 17 mpbir2and TTarskiTrTTUniv