Metamath Proof Explorer


Theorem grutsk

Description: Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Assertion grutsk Univ=xTarski|Trx

Proof

Step Hyp Ref Expression
1 0tsk Tarski
2 eleq1 y=yTarskiTarski
3 1 2 mpbiri y=yTarski
4 3 a1i yUnivy=yTarski
5 vex yV
6 unir1 R1On=V
7 5 6 eleqtrri yR1On
8 eqid yOn=yOn
9 8 grur1 yUnivyR1Ony=R1yOn
10 7 9 mpan2 yUnivy=R1yOn
11 10 adantr yUnivyy=R1yOn
12 8 gruina yUnivyyOnInacc
13 inatsk yOnInaccR1yOnTarski
14 12 13 syl yUnivyR1yOnTarski
15 11 14 eqeltrd yUnivyyTarski
16 15 ex yUnivyyTarski
17 4 16 pm2.61dne yUnivyTarski
18 grutr yUnivTry
19 17 18 jca yUnivyTarskiTry
20 grutsk1 yTarskiTryyUniv
21 19 20 impbii yUnivyTarskiTry
22 treq x=yTrxTry
23 22 elrab yxTarski|TrxyTarskiTry
24 21 23 bitr4i yUnivyxTarski|Trx
25 24 eqriv Univ=xTarski|Trx