Metamath Proof Explorer


Theorem gsummptfidminv

Description: Inverse of a group sum expressed as mapping with a finite domain. (Contributed by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsuminv.b B=BaseG
gsuminv.z 0˙=0G
gsuminv.p I=invgG
gsuminv.g φGAbel
gsummptfidminv.a φAFin
gsummptfidminv.c φxACB
gsummptfidminv.f F=xAC
Assertion gsummptfidminv φGIF=IGF

Proof

Step Hyp Ref Expression
1 gsuminv.b B=BaseG
2 gsuminv.z 0˙=0G
3 gsuminv.p I=invgG
4 gsuminv.g φGAbel
5 gsummptfidminv.a φAFin
6 gsummptfidminv.c φxACB
7 gsummptfidminv.f F=xAC
8 6 7 fmptd φF:AB
9 2 fvexi 0˙V
10 9 a1i φ0˙V
11 7 5 6 10 fsuppmptdm φfinSupp0˙F
12 1 2 3 4 5 8 11 gsuminv φGIF=IGF