| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumsub.b |
|
| 2 |
|
gsumsub.z |
|
| 3 |
|
gsumsub.m |
|
| 4 |
|
gsumsub.g |
|
| 5 |
|
gsumsub.a |
|
| 6 |
|
gsumsub.f |
|
| 7 |
|
gsumsub.h |
|
| 8 |
|
gsumsub.fn |
|
| 9 |
|
gsumsub.hn |
|
| 10 |
|
eqid |
|
| 11 |
|
ablcmn |
|
| 12 |
4 11
|
syl |
|
| 13 |
|
eqid |
|
| 14 |
|
ablgrp |
|
| 15 |
4 14
|
syl |
|
| 16 |
1 13 15
|
grpinvf1o |
|
| 17 |
|
f1of |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
fco |
|
| 20 |
18 7 19
|
syl2anc |
|
| 21 |
2
|
fvexi |
|
| 22 |
21
|
a1i |
|
| 23 |
1
|
fvexi |
|
| 24 |
23
|
a1i |
|
| 25 |
2 13
|
grpinvid |
|
| 26 |
15 25
|
syl |
|
| 27 |
22 7 18 5 24 9 26
|
fsuppco2 |
|
| 28 |
1 2 10 12 5 6 20 8 27
|
gsumadd |
|
| 29 |
1 2 13 4 5 7 9
|
gsuminv |
|
| 30 |
29
|
oveq2d |
|
| 31 |
28 30
|
eqtrd |
|
| 32 |
6
|
ffvelcdmda |
|
| 33 |
7
|
ffvelcdmda |
|
| 34 |
1 10 13 3
|
grpsubval |
|
| 35 |
32 33 34
|
syl2anc |
|
| 36 |
35
|
mpteq2dva |
|
| 37 |
6
|
feqmptd |
|
| 38 |
7
|
feqmptd |
|
| 39 |
5 32 33 37 38
|
offval2 |
|
| 40 |
|
fvexd |
|
| 41 |
18
|
feqmptd |
|
| 42 |
|
fveq2 |
|
| 43 |
33 38 41 42
|
fmptco |
|
| 44 |
5 32 40 37 43
|
offval2 |
|
| 45 |
36 39 44
|
3eqtr4d |
|
| 46 |
45
|
oveq2d |
|
| 47 |
1 2 12 5 6 8
|
gsumcl |
|
| 48 |
1 2 12 5 7 9
|
gsumcl |
|
| 49 |
1 10 13 3
|
grpsubval |
|
| 50 |
47 48 49
|
syl2anc |
|
| 51 |
31 46 50
|
3eqtr4d |
|