Metamath Proof Explorer


Theorem gsummptnn0fzfv

Description: A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019)

Ref Expression
Hypotheses gsummptnn0fzfv.b B=BaseG
gsummptnn0fzfv.0 0˙=0G
gsummptnn0fzfv.g φGCMnd
gsummptnn0fzfv.f φFB0
gsummptnn0fzfv.s φS0
gsummptnn0fzfv.u φx0S<xFx=0˙
Assertion gsummptnn0fzfv φGk0Fk=Gk=0SFk

Proof

Step Hyp Ref Expression
1 gsummptnn0fzfv.b B=BaseG
2 gsummptnn0fzfv.0 0˙=0G
3 gsummptnn0fzfv.g φGCMnd
4 gsummptnn0fzfv.f φFB0
5 gsummptnn0fzfv.s φS0
6 gsummptnn0fzfv.u φx0S<xFx=0˙
7 elmapi FB0F:0B
8 ffvelcdm F:0Bk0FkB
9 8 ex F:0Bk0FkB
10 4 7 9 3syl φk0FkB
11 10 ralrimiv φk0FkB
12 breq2 x=kS<xS<k
13 fveqeq2 x=kFx=0˙Fk=0˙
14 12 13 imbi12d x=kS<xFx=0˙S<kFk=0˙
15 14 cbvralvw x0S<xFx=0˙k0S<kFk=0˙
16 6 15 sylib φk0S<kFk=0˙
17 1 2 3 11 5 16 gsummptnn0fz φGk0Fk=Gk=0SFk