Metamath Proof Explorer


Theorem gsumreidx

Description: Re-index a finite group sum using a bijection. Corresponds to the first equation in Lang p. 5 with M = 1 . (Contributed by AV, 26-Dec-2023)

Ref Expression
Hypotheses gsumreidx.b B=BaseG
gsumreidx.z 0˙=0G
gsumreidx.g φGCMnd
gsumreidx.f φF:MNB
gsumreidx.h φH:MN1-1 ontoMN
Assertion gsumreidx φGF=GFH

Proof

Step Hyp Ref Expression
1 gsumreidx.b B=BaseG
2 gsumreidx.z 0˙=0G
3 gsumreidx.g φGCMnd
4 gsumreidx.f φF:MNB
5 gsumreidx.h φH:MN1-1 ontoMN
6 ovexd φMNV
7 fzfid φMNFin
8 2 fvexi 0˙V
9 8 a1i φ0˙V
10 4 7 9 fdmfifsupp φfinSupp0˙F
11 1 2 3 6 4 10 5 gsumf1o φGF=GFH