Metamath Proof Explorer


Theorem gsumtp

Description: Group sum of an unordered triple. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses gsumtp.b B = Base G
gsumtp.p + ˙ = + G
gsumtp.s k = M A = C
gsumtp.t k = N A = D
gsumtp.u k = O A = E
gsumtp.1 φ G CMnd
gsumtp.2 φ M V
gsumtp.3 φ N W
gsumtp.4 φ O X
gsumtp.5 φ M N
gsumtp.6 φ N O
gsumtp.7 φ M O
gsumtp.8 φ C B
gsumtp.9 φ D B
gsumtp.10 φ E B
Assertion gsumtp φ G k M N O A = C + ˙ D + ˙ E

Proof

Step Hyp Ref Expression
1 gsumtp.b B = Base G
2 gsumtp.p + ˙ = + G
3 gsumtp.s k = M A = C
4 gsumtp.t k = N A = D
5 gsumtp.u k = O A = E
6 gsumtp.1 φ G CMnd
7 gsumtp.2 φ M V
8 gsumtp.3 φ N W
9 gsumtp.4 φ O X
10 gsumtp.5 φ M N
11 gsumtp.6 φ N O
12 gsumtp.7 φ M O
13 gsumtp.8 φ C B
14 gsumtp.9 φ D B
15 gsumtp.10 φ E B
16 tpfi M N O Fin
17 16 a1i φ M N O Fin
18 3 adantl φ k M N O k = M A = C
19 13 ad2antrr φ k M N O k = M C B
20 18 19 eqeltrd φ k M N O k = M A B
21 4 adantl φ k M N O k = N A = D
22 14 ad2antrr φ k M N O k = N D B
23 21 22 eqeltrd φ k M N O k = N A B
24 5 adantl φ k M N O k = O A = E
25 15 ad2antrr φ k M N O k = O E B
26 24 25 eqeltrd φ k M N O k = O A B
27 eltpi k M N O k = M k = N k = O
28 27 adantl φ k M N O k = M k = N k = O
29 20 23 26 28 mpjao3dan φ k M N O A B
30 disjprsn M O N O M N O =
31 12 11 30 syl2anc φ M N O =
32 df-tp M N O = M N O
33 32 a1i φ M N O = M N O
34 1 2 6 17 29 31 33 gsummptfidmsplit φ G k M N O A = G k M N A + ˙ G k O A
35 1 2 3 4 gsumpr G CMnd M V N W M N C B D B G k M N A = C + ˙ D
36 6 7 8 10 13 14 35 syl132anc φ G k M N A = C + ˙ D
37 6 cmnmndd φ G Mnd
38 5 adantl φ k = O A = E
39 1 37 9 15 38 gsumsnd φ G k O A = E
40 36 39 oveq12d φ G k M N A + ˙ G k O A = C + ˙ D + ˙ E
41 34 40 eqtrd φ G k M N O A = C + ˙ D + ˙ E