Metamath Proof Explorer


Theorem gt0div

Description: Division of a positive number by a positive number. (Contributed by NM, 28-Sep-2005)

Ref Expression
Assertion gt0div AB0<B0<A0<AB

Proof

Step Hyp Ref Expression
1 0re 0
2 ltdiv1 0AB0<B0<A0B<AB
3 1 2 mp3an1 AB0<B0<A0B<AB
4 3 3impb AB0<B0<A0B<AB
5 recn BB
6 gt0ne0 B0<BB0
7 div0 BB00B=0
8 5 6 7 syl2an2r B0<B0B=0
9 8 breq1d B0<B0B<AB0<AB
10 9 3adant1 AB0<B0B<AB0<AB
11 4 10 bitrd AB0<B0<A0<AB