Metamath Proof Explorer


Theorem harcard

Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of Suppes p. 228. (Contributed by Mario Carneiro, 20-Jan-2013) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion harcard cardharA=harA

Proof

Step Hyp Ref Expression
1 harcl harAOn
2 harndom ¬harAA
3 simpll xOnharAxyharAxOn
4 simpr xOnharAxyharAyharA
5 elharval yharAyOnyA
6 4 5 sylib xOnharAxyharAyOnyA
7 6 simpld xOnharAxyharAyOn
8 ontri1 xOnyOnxy¬yx
9 3 7 8 syl2anc xOnharAxyharAxy¬yx
10 simpllr xOnharAxyharAxyharAx
11 ssdomg yVxyxy
12 11 elv xyxy
13 6 simprd xOnharAxyharAyA
14 domtr xyyAxA
15 12 13 14 syl2anr xOnharAxyharAxyxA
16 endomtr harAxxAharAA
17 10 15 16 syl2anc xOnharAxyharAxyharAA
18 17 ex xOnharAxyharAxyharAA
19 9 18 sylbird xOnharAxyharA¬yxharAA
20 2 19 mt3i xOnharAxyharAyx
21 20 ex xOnharAxyharAyx
22 21 ssrdv xOnharAxharAx
23 22 ex xOnharAxharAx
24 23 rgen xOnharAxharAx
25 iscard2 cardharA=harAharAOnxOnharAxharAx
26 1 24 25 mpbir2an cardharA=harA