Metamath Proof Explorer


Theorem iscard2

Description: Two ways to express the property of being a cardinal number. Definition 8 of Suppes p. 225. (Contributed by Mario Carneiro, 15-Jan-2013)

Ref Expression
Assertion iscard2 cardA=AAOnxOnAxAx

Proof

Step Hyp Ref Expression
1 cardon cardAOn
2 eleq1 cardA=AcardAOnAOn
3 1 2 mpbii cardA=AAOn
4 eqss cardA=AcardAAAcardA
5 cardonle AOncardAA
6 5 biantrurd AOnAcardAcardAAAcardA
7 4 6 bitr4id AOncardA=AAcardA
8 oncardval AOncardA=yOn|yA
9 8 sseq2d AOnAcardAAyOn|yA
10 7 9 bitrd AOncardA=AAyOn|yA
11 ssint AyOn|yAxyOn|yAAx
12 breq1 y=xyAxA
13 12 elrab xyOn|yAxOnxA
14 ensymb xAAx
15 14 anbi2i xOnxAxOnAx
16 13 15 bitri xyOn|yAxOnAx
17 16 imbi1i xyOn|yAAxxOnAxAx
18 impexp xOnAxAxxOnAxAx
19 17 18 bitri xyOn|yAAxxOnAxAx
20 19 ralbii2 xyOn|yAAxxOnAxAx
21 11 20 bitri AyOn|yAxOnAxAx
22 10 21 bitrdi AOncardA=AxOnAxAx
23 3 22 biadanii cardA=AAOnxOnAxAx