Metamath Proof Explorer


Theorem hargch

Description: If A + ~~P A , then A is a GCH-set. The much simpler converse to gchhar . (Contributed by Mario Carneiro, 2-Jun-2015)

Ref Expression
Assertion hargch harA𝒫AAGCH

Proof

Step Hyp Ref Expression
1 harcl harAOn
2 sdomdom xharAxharA
3 ondomen harAOnxharAxdomcard
4 1 2 3 sylancr xharAxdomcard
5 onenon harAOnharAdomcard
6 1 5 ax-mp harAdomcard
7 cardsdom2 xdomcardharAdomcardcardxcardharAxharA
8 4 6 7 sylancl xharAcardxcardharAxharA
9 8 ibir xharAcardxcardharA
10 harcard cardharA=harA
11 9 10 eleqtrdi xharAcardxharA
12 elharval cardxharAcardxOncardxA
13 12 simprbi cardxharAcardxA
14 11 13 syl xharAcardxA
15 cardid2 xdomcardcardxx
16 domen1 cardxxcardxAxA
17 4 15 16 3syl xharAcardxAxA
18 14 17 mpbid xharAxA
19 domnsym xA¬Ax
20 18 19 syl xharA¬Ax
21 20 con2i Ax¬xharA
22 sdomen2 harA𝒫AxharAx𝒫A
23 22 notbid harA𝒫A¬xharA¬x𝒫A
24 21 23 imbitrid harA𝒫AAx¬x𝒫A
25 imnan Ax¬x𝒫A¬Axx𝒫A
26 24 25 sylib harA𝒫A¬Axx𝒫A
27 26 alrimiv harA𝒫Ax¬Axx𝒫A
28 27 olcd harA𝒫AAFinx¬Axx𝒫A
29 relen Rel
30 29 brrelex2i harA𝒫A𝒫AV
31 pwexb AV𝒫AV
32 30 31 sylibr harA𝒫AAV
33 elgch AVAGCHAFinx¬Axx𝒫A
34 32 33 syl harA𝒫AAGCHAFinx¬Axx𝒫A
35 28 34 mpbird harA𝒫AAGCH