Description: If A + ~~P A , then A is a GCH-set. The much simpler converse to gchhar . (Contributed by Mario Carneiro, 2-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hargch | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | harcl | |
|
2 | sdomdom | |
|
3 | ondomen | |
|
4 | 1 2 3 | sylancr | |
5 | onenon | |
|
6 | 1 5 | ax-mp | |
7 | cardsdom2 | |
|
8 | 4 6 7 | sylancl | |
9 | 8 | ibir | |
10 | harcard | |
|
11 | 9 10 | eleqtrdi | |
12 | elharval | |
|
13 | 12 | simprbi | |
14 | 11 13 | syl | |
15 | cardid2 | |
|
16 | domen1 | |
|
17 | 4 15 16 | 3syl | |
18 | 14 17 | mpbid | |
19 | domnsym | |
|
20 | 18 19 | syl | |
21 | 20 | con2i | |
22 | sdomen2 | |
|
23 | 22 | notbid | |
24 | 21 23 | imbitrid | |
25 | imnan | |
|
26 | 24 25 | sylib | |
27 | 26 | alrimiv | |
28 | 27 | olcd | |
29 | relen | |
|
30 | 29 | brrelex2i | |
31 | pwexb | |
|
32 | 30 31 | sylibr | |
33 | elgch | |
|
34 | 32 33 | syl | |
35 | 28 34 | mpbird | |