Metamath Proof Explorer


Theorem harinf

Description: The Hartogs number of an infinite set is at least _om .MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015)

Ref Expression
Assertion harinf SV¬SFinωharS

Proof

Step Hyp Ref Expression
1 nnon xωxOn
2 1 adantl SV¬SFinxωxOn
3 simplr SV¬SFinxω¬SFin
4 nnfi xωxFin
5 4 adantl SV¬SFinxωxFin
6 sdomdom SxSx
7 domfi xFinSxSFin
8 7 ex xFinSxSFin
9 5 6 8 syl2im SV¬SFinxωSxSFin
10 3 9 mtod SV¬SFinxω¬Sx
11 simpll SV¬SFinxωSV
12 fidomtri xFinSVxS¬Sx
13 5 11 12 syl2anc SV¬SFinxωxS¬Sx
14 10 13 mpbird SV¬SFinxωxS
15 elharval xharSxOnxS
16 2 14 15 sylanbrc SV¬SFinxωxharS
17 16 ex SV¬SFinxωxharS
18 17 ssrdv SV¬SFinωharS