Metamath Proof Explorer


Theorem hashen

Description: Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion hashen AFinBFinA=BAB

Proof

Step Hyp Ref Expression
1 fveq2 A=BrecxVx+10ω-1A=recxVx+10ω-1B
2 eqid recxVx+10ω=recxVx+10ω
3 2 hashginv AFinrecxVx+10ω-1A=cardA
4 2 hashginv BFinrecxVx+10ω-1B=cardB
5 3 4 eqeqan12d AFinBFinrecxVx+10ω-1A=recxVx+10ω-1BcardA=cardB
6 1 5 imbitrid AFinBFinA=BcardA=cardB
7 fveq2 cardA=cardBrecxVx+10ωcardA=recxVx+10ωcardB
8 2 hashgval AFinrecxVx+10ωcardA=A
9 2 hashgval BFinrecxVx+10ωcardB=B
10 8 9 eqeqan12d AFinBFinrecxVx+10ωcardA=recxVx+10ωcardBA=B
11 7 10 imbitrid AFinBFincardA=cardBA=B
12 6 11 impbid AFinBFinA=BcardA=cardB
13 finnum AFinAdomcard
14 finnum BFinBdomcard
15 carden2 AdomcardBdomcardcardA=cardBAB
16 13 14 15 syl2an AFinBFincardA=cardBAB
17 12 16 bitrd AFinBFinA=BAB