Metamath Proof Explorer


Theorem hashfzo

Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion hashfzo BAA..^B=BA

Proof

Step Hyp Ref Expression
1 fzo0 A..^A=
2 1 fveq2i A..^A=
3 hash0 =0
4 2 3 eqtri A..^A=0
5 eluzel2 BAA
6 5 zcnd BAA
7 6 subidd BAAA=0
8 4 7 eqtr4id BAA..^A=AA
9 oveq2 B=AA..^B=A..^A
10 9 fveq2d B=AA..^B=A..^A
11 oveq1 B=ABA=AA
12 10 11 eqeq12d B=AA..^B=BAA..^A=AA
13 8 12 syl5ibrcom BAB=AA..^B=BA
14 eluzelz BAB
15 fzoval BA..^B=AB1
16 14 15 syl BAA..^B=AB1
17 16 fveq2d BAA..^B=AB1
18 17 adantr BAB1AA..^B=AB1
19 hashfz B1AAB1=B1-A+1
20 14 zcnd BAB
21 1cnd BA1
22 20 21 6 sub32d BAB-1-A=B-A-1
23 22 oveq1d BAB1-A+1=BA-1+1
24 20 6 subcld BABA
25 ax-1cn 1
26 npcan BA1BA-1+1=BA
27 24 25 26 sylancl BABA-1+1=BA
28 23 27 eqtrd BAB1-A+1=BA
29 19 28 sylan9eqr BAB1AAB1=BA
30 18 29 eqtrd BAB1AA..^B=BA
31 30 ex BAB1AA..^B=BA
32 uzm1 BAB=AB1A
33 13 31 32 mpjaod BAA..^B=BA