Metamath Proof Explorer


Theorem hashinfxadd

Description: The extended real addition of the size of an infinite set with the size of an arbitrary set yields plus infinity. (Contributed by Alexander van der Vekens, 20-Dec-2017)

Ref Expression
Assertion hashinfxadd AVBWA0A+𝑒B=+∞

Proof

Step Hyp Ref Expression
1 hashnn0pnf AVA0A=+∞
2 df-nel A0¬A0
3 2 anbi2i A=+∞A0A0A=+∞A0¬A0
4 pm5.61 A=+∞A0¬A0A=+∞¬A0
5 3 4 sylbb A=+∞A0A0A=+∞¬A0
6 5 ex A=+∞A0A0A=+∞¬A0
7 6 orcoms A0A=+∞A0A=+∞¬A0
8 1 7 syl AVA0A=+∞¬A0
9 8 imp AVA0A=+∞¬A0
10 9 3adant2 AVBWA0A=+∞¬A0
11 oveq1 A=+∞A+𝑒B=+∞+𝑒B
12 hashxrcl BWB*
13 hashnemnf BWB−∞
14 12 13 jca BWB*B−∞
15 14 3ad2ant2 AVBWA0B*B−∞
16 xaddpnf2 B*B−∞+∞+𝑒B=+∞
17 15 16 syl AVBWA0+∞+𝑒B=+∞
18 11 17 sylan9eqr AVBWA0A=+∞A+𝑒B=+∞
19 18 expcom A=+∞AVBWA0A+𝑒B=+∞
20 19 adantr A=+∞¬A0AVBWA0A+𝑒B=+∞
21 10 20 mpcom AVBWA0A+𝑒B=+∞