Metamath Proof Explorer


Theorem hashneq0

Description: Two ways of saying a set is not empty. (Contributed by Alexander van der Vekens, 23-Sep-2018)

Ref Expression
Assertion hashneq0 AV0<AA

Proof

Step Hyp Ref Expression
1 hashnn0pnf AVA0A=+∞
2 nn0re A0A
3 nn0ge0 A00A
4 ne0gt0 A0AA00<A
5 2 3 4 syl2anc A0A00<A
6 5 bicomd A00<AA0
7 breq2 A=+∞0<A0<+∞
8 0ltpnf 0<+∞
9 0re 0
10 renepnf 00+∞
11 9 10 ax-mp 0+∞
12 11 necomi +∞0
13 8 12 2th 0<+∞+∞0
14 neeq1 A=+∞A0+∞0
15 13 14 bitr4id A=+∞0<+∞A0
16 7 15 bitrd A=+∞0<AA0
17 6 16 jaoi A0A=+∞0<AA0
18 1 17 syl AV0<AA0
19 hasheq0 AVA=0A=
20 19 necon3bid AVA0A
21 18 20 bitrd AV0<AA