Description: Two ways of saying a set is not empty. (Contributed by Alexander van der Vekens, 23-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | hashneq0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnn0pnf | |
|
2 | nn0re | |
|
3 | nn0ge0 | |
|
4 | ne0gt0 | |
|
5 | 2 3 4 | syl2anc | |
6 | 5 | bicomd | |
7 | breq2 | |
|
8 | 0ltpnf | |
|
9 | 0re | |
|
10 | renepnf | |
|
11 | 9 10 | ax-mp | |
12 | 11 | necomi | |
13 | 8 12 | 2th | |
14 | neeq1 | |
|
15 | 13 14 | bitr4id | |
16 | 7 15 | bitrd | |
17 | 6 16 | jaoi | |
18 | 1 17 | syl | |
19 | hasheq0 | |
|
20 | 19 | necon3bid | |
21 | 18 20 | bitrd | |