Metamath Proof Explorer


Theorem hashrepr

Description: Develop the number of representations of an integer M as a sum of nonnegative integers in set A . (Contributed by Thierry Arnoux, 14-Dec-2021)

Ref Expression
Hypotheses hashrepr.a φA
hashrepr.m φM0
hashrepr.s φS0
Assertion hashrepr φAreprSM=creprSMa0..^S𝟙Aca

Proof

Step Hyp Ref Expression
1 hashrepr.a φA
2 hashrepr.m φM0
3 hashrepr.s φS0
4 2 nn0zd φM
5 fzfid φ1MFin
6 fz1ssnn 1M
7 6 a1i φ1M
8 1 4 3 5 7 hashreprin φA1MreprSM=c1MreprSMa0..^S𝟙Aca
9 2 3 1 reprinfz1 φAreprSM=A1MreprSM
10 9 fveq2d φAreprSM=A1MreprSM
11 2 3 reprfz1 φreprSM=1MreprSM
12 11 sumeq1d φcreprSMa0..^S𝟙Aca=c1MreprSMa0..^S𝟙Aca
13 8 10 12 3eqtr4d φAreprSM=creprSMa0..^S𝟙Aca