Metamath Proof Explorer


Theorem hashun2

Description: The size of the union of finite sets is less than or equal to the sum of their sizes. (Contributed by Mario Carneiro, 23-Sep-2013) (Proof shortened by Mario Carneiro, 27-Jul-2014)

Ref Expression
Assertion hashun2 AFinBFinABA+B

Proof

Step Hyp Ref Expression
1 undif2 ABA=AB
2 1 fveq2i ABA=AB
3 diffi BFinBAFin
4 disjdif ABA=
5 hashun AFinBAFinABA=ABA=A+BA
6 4 5 mp3an3 AFinBAFinABA=A+BA
7 3 6 sylan2 AFinBFinABA=A+BA
8 2 7 eqtr3id AFinBFinAB=A+BA
9 3 adantl AFinBFinBAFin
10 hashcl BAFinBA0
11 9 10 syl AFinBFinBA0
12 11 nn0red AFinBFinBA
13 hashcl BFinB0
14 13 adantl AFinBFinB0
15 14 nn0red AFinBFinB
16 hashcl AFinA0
17 16 adantr AFinBFinA0
18 17 nn0red AFinBFinA
19 simpr AFinBFinBFin
20 difss BAB
21 ssdomg BFinBABBAB
22 19 20 21 mpisyl AFinBFinBAB
23 hashdom BAFinBFinBABBAB
24 9 23 sylancom AFinBFinBABBAB
25 22 24 mpbird AFinBFinBAB
26 12 15 18 25 leadd2dd AFinBFinA+BAA+B
27 8 26 eqbrtrd AFinBFinABA+B